Cytochrome bc1-cy fusion complexes reveal the distance constraints for functional electron transfer between photosynthesis components.
نویسندگان
چکیده
Photosynthetic (Ps) growth of purple non-sulfur bacteria such as Rhodobacter capsulatus depends on the cyclic electron transfer (ET) between the ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductases (cyt bc1 complex), and the photochemical reaction centers (RC), mediated by either a membrane-bound (cyt c(y)) or a freely diffusible (cyt c2) electron carrier. Previously, we constructed a functional cyt bc1-c(y) fusion complex that supported Ps growth solely relying on membrane-confined ET ( Lee, D.-W., Ozturk, Y., Mamedova, A., Osyczka, A., Cooley, J. W., and Daldal, F. (2006) Biochim. Biophys. Acta 1757, 346-352 ). In this work, we further characterized this cyt bc1-c(y) fusion complex, and used its derivatives with shorter cyt c(y) linkers as "molecular rulers" to probe the distances separating the Ps components. Comparison of the physicochemical properties of both membrane-embedded and purified cyt bc1-c(y) fusion complexes established that these enzymes were matured and assembled properly. Light-activated, time-resolved kinetic spectroscopy analyses revealed that their variants with shorter cyt c(y) linkers exhibited fast, native-like ET rates to the RC via the cyt bc1. However, shortening the length of the cyt c(y) linker decreased drastically this electronic coupling between the cyt bc1-c(y) fusion complexes and the RC, thereby limiting Ps growth. The shortest and still functional cyt c(y) linker was about 45 amino acids long, showing that the minimal distance allowed between the cyt bc1-c(y) fusion complexes and the RC and their surrounding light harvesting proteins was very short. These findings support the notion that membrane-bound Ps components form large, active structural complexes that are "hardwired" for cyclic ET.
منابع مشابه
Catalytically-relevant electron transfer between two hemes bL in the hybrid cytochrome bc1-like complex containing a fusion of Rhodobacter sphaeroides and capsulatus cytochromes b
To address mechanistic questions about the functioning of dimeric cytochrome bc1 new genetic approaches have recently been developed. They were specifically designed to enable construction of asymmetrically-mutated variants suitable for functional studies. One approach exploited a fusion of two cytochromes b that replaced the separate subunits in the dimer. The fusion protein, built from two co...
متن کاملCrystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c.
Small diffusible redox proteins facilitate electron transfer in respiration and photosynthesis by alternately binding to integral membrane proteins. Specific and transient complexes need to be formed between the redox partners to ensure fast turnover. In respiration, the mobile electron carrier cytochrome c shuttles electrons from the cytochrome bc1 complex to cytochrome c oxidase. Despite exte...
متن کاملMolecular Organization of Cytochrome c2 near the Binding Domain of Cytochrome bc1 Studied by Electron Spin–Lattice Relaxation Enhancement
Measurements of specific interactions between proteins are challenging. In redox systems, interactions involve surfaces near the attachment sites of cofactors engaged in interprotein electron transfer (ET). Here we analyzed binding of cytochrome c2 to cytochrome bc1 by measuring paramagnetic relaxation enhancement (PRE) of spin label (SL) attached to cytochrome c2. PRE was exclusively induced b...
متن کاملCytochrome bc1 complexes of microorganisms.
The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a...
متن کاملProtonmotive Q cycle pathway of electron transfer and energy transduction in the three-subunit ubiquinol-cytochrome c oxidoreductase complex of Paracoccus denitrificans.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans consists of only three polypeptide subunits (Yang, X., and Trumpower, B. L. (1986) J. Biol. Chem. 261, 12282-12289), whereas the analogous complexes of eukaryotic mitochondria consist of nine or more polypeptides (Schagger, H., Link, T. A., Engel, W. D., and von Jagow, G. (1986) Methods Enzymol. 126, 22...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 283 20 شماره
صفحات -
تاریخ انتشار 2008